

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Projekt

Department Fahrzeugtechnik und Flugzeugbau

Masse- und Schwerpunktberechnungen im Flugzeugentwurf mit PreSTo

Verfasser: Marcin Bazydlo

Prüfer:Prof. Dr.-Ing. Dieter Scholz, MSMETutor:Dipl.-Ing. Philippe Montarnal

11.07.2010

Hochschule für Angewandte Wissenschaften Hamburg Fakultät Technik und Informatik Department Fahrzeugtechnik + Flugzeugbau Berliner Tor 9 20099 Hamburg

Verfasser: Marcin Bazydlo Abgabedatum: 11.07.2010

Prüfer:Prof. Dr.-Ing. Dieter Scholz, MSMETutor:Dipl.-Ing. Philippe Montarnal

Kurzreferat

Diese Projektarbeit beschreibt die Integration von Masse- und Schwerpunktberechnungen im Flugzeugentwurf mit PreSTo. PreSTo (Preliminary Sizing Tool) ist das Tool zur Dimensionierung von konventionellen Flugzeugen im Unterschallbereich. Es ist mit Microsoft Excel 2003 erstellt. PreSTo wurde entwickelt, um schnell neue Projekte zu berechnen. Es ist ein schnelles und nutzerfreundliches Werkzeug, mit dem man ein Projekt bewerten und Haupteigenschaften abschätzen kann. Für Masseauslegungen werden drei verschiedene Methoden verwendet. Zwei von ihnen (RoskamV und Raymer 89) sind die Class I Methoden. Torenbeek 88 ist die Class II Methode. Class I Methoden sind einfacher und brauchen weniger Parameter als Class II Methoden. Sind aber ungenauer. In der neuen Version von PreSTo kann der Nutzer wählen, welche Methode verwendet werden soll. Danach soll er nur das Referenzflugzeug wählen (für RoskamV Methode), den Flugzeugtyp (für Raymer 89) und kann die Ergebnisse einlesen. Wenn die Class II Torenbeek Methode gewählt wurde, man muss mehr Parameter eingeben, die Ergebnisse sind aber genauer. Der Schwerpunkt für die Betriebsleermasse ist nach dem Skript zur Vorlesung Flugzeugentwurf der HAW Hamburg berechnet. Dort wird auch angegeben, wie die Flügelposition festzulegen ist. In einem weiteren Teil der Arbeit wurde auch die CG-Travel-Tabelle aus einer vorherigen Projektarbeit in PreSTo integriert. Diese Tabelle enthält die Schwerpunktverschiebungsberechnung bei Beladung des Flugzeugs, das sogenannte Kartoffelkurvendiagramm. Um alle Berechnungen in dieser Tabelle per Hand zu machen, bräuchte man viel Zeit. Deswegen wurden die Berechnungen automatisiert. Die ganze Tabelle wurde nach dem Look & Feel von PreSTo eingearbeitet. Bei der Entwicklung wurden auch der Aspekt der Nutzerfreundlichkeit und ein klarer Quellecode für die Weiterentwicklung beachtet.

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

DEPARTMENT FAHRZEUGTECHNIK UND FLUGZEUGBAU

Masse- und Schwerpunktberechnungen im Flugzeugentwurf mit PreSTo

Aufgabenstellung zum Projekt gemäß Prüfungsordnung

Hintergrund

PreSTo (Preliminary Sizing Tool) ist eine Tabellenkalkulation auf Basis der Vorlesung "Flugzeugentwurf" von Prof. Scholz an der HAW Hamburg. Der Benutzer wird schrittweise durch den Flugzeugvorentwurf geführt, wobei die gestellten Anforderungen an das Flugzeug systematisch abgefragt und bearbeitet werden. Ein Teil des Flugzeugvorentwurfs ist auch die Abschätzung der Masse und die Berechnung der Lage des Flugzeugschwerpunktes. Um den Flugzeugschwerpunkt in Bezug auf den Flügel richtig zu platzieren, muss der Flügel evtl. zum Rumpf noch verschoben und korrekt platziert werden.

Aufgabe

Aufgabe ist die Programmierung ausgewählter Algorithmen zur Abschätzung der Massen der Flugzeughauptbaugruppen mit einer Tabellenkalkulation (Excel / CALC) in PreSTo. Weiterhin ist Aufgabe die Berechnung des Flugzeugschwerpunktes und die korrekte Anordnung des Flügels. Im Detail sind folgende Punkte zu bearbeiten:

- Masseaufteilung (nach ROSKAM) basierend auf der abgeschätzten Betriebsleermasse aus der Flugzeugdimensionierung.
- Class I Methode zur Masseschätzung (nach RAYMER) mit verbesserten Faktoren aus der Projektarbeit von André Freitag. Siehe: <u>http://Bibliothek.ProfScholz.de</u>.
- Class 2 Methode zur Masseschätzung (nach TORENBEEK) Siehe: FE-Skript.
- Berechnung des Schwerpunktes.
- Berechnung der notwendigen Verschiebung des Flügels.
- Einarbeitung der Berechnungen in das Look & Feel von PreSTo.
- Darstellung der "Schwerpunktwanderung bei Passagierflugzeugen" in PreSTo (Diagramm, mit "Kartoffelkurven", Kraftstoffvektor, und Frachtvektoren) gemäß der Projektarbeit von Nicolas Detalle. Siehe: <u>http://Bibliothek.ProfScholz.de</u>.

Die Ergebnisse sollen in einem Bericht dokumentiert werden. Bei der Erstellung des Berichtes sind die entsprechenden DIN-Normen zu beachten.

4

Inhalt

		Seite				
Verzeichnis der Bilder						
Verz	Verzeichnis der Tabellen					
Liste	Liste der Symbole					
Liste	der Abkurzungen	10				
verz	eicnnis der Begriffe und Definitionen	11				
1	Einleitung					
1.1	Motivation	12				
1.2	Literaturübersicht					
1.3	Aufbau der Arbeit	13				
2	Massanharaahnung	14				
2 2 1	Massenbereennung	14				
2.1	Class I Roskally Methode	13				
2.2	Class II Torenbeek 88 Methode	17				
2.5	Class II Torenocekso Methode	19				
3	Schwerpunkts- und Flügellageberechnung					
4	Denstellung den Engebnisse	20				
4	Darstenung der Ergebnisse					
5	Erforderlicher Schwerpunktsbereich					
6	Zusammenfassung					
	8					
Liter	aturverzeichnis					
Anha	ang A Bilder aus PreSTo <i>Mass and CG</i> -Tabelle					
Anha	ang B ChoseTorenbeek88Methode Makroquellcode					
Anha	ang C Beladungsdiagramm in PreSTo					

Verzeichnis der Bilder

Bild 2.1	Hauptknöpfe in Mass and CG-Tabelle	14
Bild 2.2	Interface für RoskamV Methode in PreSTo	19
Bild 2.3	VBA Do-Loop-While-Schleife die Flügelmasse nach Torenbeek88	berechnet
20		
Bild 3.1	Die Lage der Schwerpunkte von Massengruppen. (Scholz 1999)	25
Bild 3.2	Geometrisches Berechnungsschema für Gleichung (3.2)	26
Bild 3.3	Geometrisches Berechnungsschema für Gleichung (3.5)	27
Bild A.1	Hauptknöpfe in PreSTo	
Bild A.2	RoskamV Methodeinterface in PreSTo	
Bild A.3	Raymer89 Methodeinterface in PreSTo	34
Bild A.4	Torenbeek88 Methodeinterface Teil 1 in PreSTo	34
Bild A.5	Torenbeek88 Methodeinterface Teil 2 in PreSTo	35
Bild A.6	Schwerpunktberechnungsinterface in PreSTo	35
Bild A.7	Ergebnisinterface in PreSTo	
Bild C.1	Beladungsdiagramm aus PreSTo	

Verzeichnis der Tabellen

Tabelle 2.1	Massengruppen. (Scholz 1999)14
Tabelle 2.2	Komponentenmassenaufteillungentabelle. (RoskamV 1989)15
Tabelle 2.3	Rechenschema für die Class I Massenprognose basierend auf Daten aus
	Scholz 1999 mit Parametern nach Freitag 200617
Tabelle 2.4	Die sichere Lastvielfachenwerten für <i>normal</i> und <i>commuter category</i>
	<i>aeroplane</i> nach JAR-23 sowie Flugzeuge nach JAR-25 (Scholz 1999) 20
Tabelle 2.5	Tabelle mit Korrekturfaktoren integriert in PreSTo für Rumpfmassen- auslegung (Zellen AB109:AF113)21
Tabelle 2.6	Tabelle mit Koeffizienten für die Berechnung der Fahrwerksmasse (To- renbeek 1988)
Tabelle 4.1	Massenhauptgruppen und Massenbegriffe nach (DIN9020) Teil 1 zitiert nach (Scholz 1999)

Liste der Symbole

BPR	Nebenstromverhältnis
b	Spanweite
b _{ref}	Referenzwert
b_s	strukturelle Spanweite
\mathcal{C}_k	Profiltiefe am Kink
C_r	Profiltiefe am Rumpf
C_t	Profiltiefe an der Spitze
d_F	Rumpfdurchmesser
g	Erdbeschleunigung
h_F	maximale Rumpfhöhe
k	Koeffizient
l_F	Länge des Rumpfes
l_H	Hebelarm des Höhenleitwerks
m_W	Flügelmasse
m_F	Rumpfmasse
m_H	Masse des Höhenleitwerks
m_V	Masse des Seitenleitwerks
m_{LG}	Fahrwerksmasse
$m_{LG,N}$	Masse des Bugfahrwerks
$m_{LG,M}$	Masse des Hauptfahrwerks
m_N	Masse aller Triebwerksgondeln zusammen
m_E	Masse eines Triebwerks
$m_{E,inst}$	Masse der installierten Triebwerke
m_{SYS}	Masse der Systeme
m_{ME}	Hersteller-Leermasse
m_{MTO}	Maximale Startmasse
m_{FG}	Masse der Rumpfgruppe
m_{WG}	Masse der Flügelgruppe
m_{OE}	Betriebsleermasse
$m_{komponent}$	Masse von einzeln Flugzeugelement
n_{lim}	sichere Lastvielfache
n_{ult}	Bruchlastfaktor
P_F	Rumpfumfang
S	Fläche
$S_{exposed}$	ausgesetzte Oberfläche
$S_{F,wet}$	Fläche des Rumpfes
T_{TO}	Startschub
V_D	Sturzgeschwindigkeit äquivalenter Fluggeschwindigkeit
x	Abstand
x_{CG}	Abstand zwischen Referenzstelle z.B. Flugzeugnase und Schwerpunkt der Einzelteile
Z_H	senkrechter Abstand von der Wurzel des Seitenleitwerks bis zu der Stelle wo
	das Höhenleitwerk am Seitenleitwerk befestigt ist

Griechische Symbole

ϕ_0	Pfeilwinkel der LEMAC
ϕ_{50}	Pfeilwinkel der 50%MAC
$\lambda_{ m F}$	Schlankheitsgrad des Rumpfes

Indizes

Н	Höhenleitwerk
V	Seitenleitwerk
MAC	mittlere aerodynamische Profiltiefe

Liste der Abkürzungen

- CG Schwerpunkt (Center of gravity)
- DIN Deutsche Insitut für Normung
- EAS äquivalente Fluggeschwindigkeit (Equivalent air speed)
- LEMAC Vorderkante von mittlere aerodynamische Profiltiefe (Leading edge mean aerodynamic chord)
- MAC mittlere aerodynamische Profiltiefe (Mean aerodynamic chord)
- TL Turbinen-Luftstrahltriebwerk
- VBA Visual Basic for Application Computersprache
- ZTL Zweistrom-Turbinen-Luftstrahltriebwerk

Verzeichnis der Begriffe und Definitionen

Das Beladungsdiagramm

Das Beladungsdiagramm enthält den zulässigen Bereich für eine Kombinationen aus Flugzeugmasse und Schwerpunktlage. Eingezeichnet in das Beladediagramm ist auch die Wanderung des Schwerpunktes beim Beladen und Entladen. Das Beladediagramm wird sowohl im Flugbetrieb als auch im Flugzeugentwurf genutzt.

Bild unter erklärt das Modell zum Einstieg der Passagiere in das Flugzeug. Startpunkt im Diagramm sind das OEW und der Schwerpunkt des OEW. Es wird angenommen, daß die Passagiere zunächst die Fensterplätze belegen (A C). Wenn die Fensterplätze gefüllt sind, werden die Plätze neben den Fensterplätzen gefüllt (C D) und danach die Plätze zum Gang (D E). Falls zunächst die hinteren Fensterplätze belegt werden, so wandern Gewicht und Schwerpunkt im Diagramm über die rechte Kurve nach oben, also z.B. bei den Fensterplätzen über (A B2 C). Werden zunächst die vorderen Fensterplätze belegt, so wird die linke Kurve beschritten (A B1 C). (Scholz 1999)

Bild Beladungsdiagramm (Torenbeek 1988) zitiert nach (Scholz 1999)

MAC

Die mittlere aerodynamische Flügeltiefe MAC (Mean Aerodynamic Chord) ist die Tiefe eines Flügels, an der sich der aerodynamische Schwerpunkt befindet. Bei einem Rechteckflügel ist die geometrische Flügeltiefe auch gleichzeitig die mittlere aerodynamische Flügeltiefe. (Luthra 2009)

1 Einleitung

1.1 Motivation

Das Tool PreSTo wurde entwickelt, um schnell die Ergebnisse für Nachentwurf oder neue Flugzeugentwicklung zu bekommen. Dieses Werkzeug hat einen sehr großen Lernund Erkenntniswert. Der Nutzer kann die Parameter schnell variieren um ihre Wirkung auf Flugzeugeigenschaften festzustellen. Mit diesem Tool ist auch möglich, die Originaldaten von existierten Flugzeugen mit Prognosenergebnissen zu vergleichen. PreSTo kann sehr große Lerneffekte haben.

Massenprognose und Schwerpunktauslegung ist eine der wichtigsten Teile des Flugzeugentwurfs. Ich fand es auch sehr interessant, die Wirkung von verschiedenen Parametern auf diese Eingeschafften zu beobachten. Der Nutzer braucht keine spezielle Vorbereitung, um PreSTo zu verwenden. Dieses Tool wurde unkompliziert und nutzerfreundlich geschrieben und funktioniert auf einer populären Plattform.

Das Tool PreSTo wird im Rahmen des Forschungsprojektes Grüner Frachter verwendet.

1.2 Literaturübersicht

Berechnungen in *Mass and CG*-Tabelle sind auf **Scholz 1999** basierend. Dieses Skript enthält den ganzen Entwicklungsweg. Die Entwicklungsschritte sind durch die Kapitel geteilt. Kapitel 10 betrifft die Masse- und Schwerpunktsberechnung auf verschiedene Arten und Weisen.

Daten über Massenaufteilungen von verschiedenen existierenden Flugzeugmodellen wurden aus **Roskam V** entnommen. Die Tabellen mit Massenaufteilungen finden sich in Appendix A statt. Die verbesserten Koeffizienten für die Raymer89 Methode wurden aus **Freitag 2006** genommen. Diese Arbeit betrifft die empirische Suchung nach Massenaufteilungskoeffizienten, die besser zu neuen Flugzeugen passen.

Detalle 2010 enthält die Beschreibung der Prinzipien und Berechnungsmethode von Schwerpunktverschiebungen während der Beladung und der Betankung des Flugzeugs. Diese Arbeit war hilfreich, um die *CG-Travel*-Tabelle zu integrieren.

1.3 Aufbau der Arbeit

Abschnitt 2	beschreibt die Massenberechnungsmethoden, die in PreSTo integriert wurden. Es enthält drei Unterkapitel für jede Methode.
Abschnitt 3	beschreibt die Schwerpunktsberechnung und die Flügelauslegung nach Scholz 1999.
Abschnitt 4	erklärt Funktionsweise der Darstellung der Ergebnisse.
Abschnitt 5	beschreibt die Integration der CG-Travel-Tabelle in PreSTo
Anhang A	enthält die Bilder der PreSTo Mass and CG-Tabelle
Anhang B	enthält den Makroquellcode der <i>ChoseTorenbeekMethode</i> als Beispiel von Makros, welche den Hauptknöpfen zugewiesen sind.
Anhang C	enthält das beispielhafte Beladungsdiagram, welches in PreSTo gene- riert ist.

2 Massenberechnung

PreSTo stellt drei verschiedene Methoden für die Massenberechnung zur Verfügung. Das sind zwei *Class I* Methoden – RoskamV und Raymer89 und eine *Class II* Methode – To-renbeek88. Der Nutzer kann eine von ihnen wählen, um die Ergebnisse zu bekommen. Wahl ist bei sogenannten Hauptknöpfen in *Mass and CG* Tabelle realisiert.

Masse und Schwerpunkt Please choose a method to progr distribution:	nose mass and mass		
Roskam V	Raymer 89	Torenbeek 88	

Bild 2.1 Hauptknopfe in Mass and CG-Tabelle

Nach dem Klick auf den Knopf wird der Tabellenteil für die gewählte Methode gezeigt, zwei andere Tabellenteile sind versteckt. Es werden weiterhin auch die Ergebnisse für die entsprechende Methode im *Results*-Kapitel angezeigt und für den Weiterentwurf verwendet. Der *Show Everything*-Knopf zeigt alle Tabellenteile (für die drei Methoden). Das *Results*-Kapitel zeigt aber die Ergebnisse für die letzte gewählte Methode an. Man kann die gewählte Methode immer in Zelle AA6 prüfen.

Die *Mass and CG*-Tabelle lässt die Masse von den Massengruppen einer sehr einfachen Massenaufteilung nach (DIN9020) berechnen. In Tabelle 2.1 sind diese Massengruppen aufgezeigt:

 Tabelle 2.1
 Massengruppen (Scholz 1999)

Flügel (wing) m _w ,
+ Rumpf (fuselage) m_F ,
+ Höhenleitwerk (horizontal tail) m _H ,
+ Seitenleitwerk (vertical tail) m_V ,
+ Bugfahrwerk (nose landing gear) $m_{LG,N}$,
+ Hauptfahrwerk (main landing gear) $m_{LG, M}$,
+ Triebwerksgondel (nacelle) m _N
= Struktur (structure)
+ Triebwerk, installiert (power plant, installed) m _{E,inst}
+ Flugzeugsysteme (aircraft systems) m _{SYS}
= Hersteller-Leermasse (manufacturer's empty weight, MEW) m $_{ME}$
+ Ausrüstung und Besatzung (standard and operational items)
= Betriebsleermasse (operational empty weight, OEW) m _{OE}

2.1 Class I RoskamV Methode

In Prinzip liefert die RoskamV Massenschätzungsmethode nur die Massenaufteilung von einzelnen Elementen und Betriebsleermasse. Die Massenabschätzung basiert auf der Theorie, dass ähnliche Flugzeuge dieselben Massenaufteilungen haben. Die Hauptkriterien sind Entwurfs- und Zulassungsbasis. Wenn es ein Flugzeug entwickelt wird, das ähnlich einem existierten Flugzeug ist, dann kann man Masse der einzelnen Elemente durch Multiplizieren der Betriebsleermasse und Massenaufteilungen des existierten Flugzeugs berechnen. Es werden also für diese Methode als Inputdaten die Betriebsleermasse und die Massenaufteilungen gebraucht. In PreSTo wurde eine Tabelle mit Massenaufteilungen von RoskamV Appendix A integriert. Es wurden nur Strahl- und Turbopropellerverkehrsflugzeuge gewählt. Ingesamt werden 31 verschiedene Flugzeugmodelle mit vollständigen Parametern genannt. Die Tabelle wird unten aufgeführt.

		Fue	F	Londing	No			Fixed	
	Wing	Fuse-	Em-	Landing		Strug	Dowor	Equ-	Empty
	Group	Group	Group	Geal	Group	Suuc-	Power	pi-	mass
MS 760 Paris	0 117	0 110	0.023	0.04	0.006	0 306	0 133	0.12	0.558
Lockheed letetar	0,117	0,113	0,023	0,04	0,000	0,300	0,133	0,12	0,530
Cates Leariet 25D	0,032	0,114	0,023	0,000	0,020	0,233	0,001	0,105	0,542
Gates Learjet 28	0,030	0,103	0,024	0,039	0,010	0,202	0,002	0,100	0,574
Cessna Citation II	0,129	0,100	0,024	0,034	0,014	0,313	0,000	0,174	0,574
Gulfstr American	0,035	0,073	0,022	0,034	0,010	0,247	0,100	0,107	0,010
GII	0,098	0,092	0,03	0,031	0,019	0,271	0,106	0,173	0,549
Grumman G-I	0,106	0,106	0,025	0,034	0,032	0,304	0,129	0,097	0,529
Fokker F-27-100	0,118	0,11	0,026	0,052	0,017	0,322	0,116	0,151	0,59
Embraer 110-P2	0,12	0,108	0,036	0,043	0,016	0,324	0,148	0,198	0,669
Short Skywan	0,098	0,172	0,03	0,037	0,02	0,357	0,123	0,086	0,566
De Havilland Ca-									
nada DHC7-102	0,111	0,106	0,03	0,039	0,042	0,329	0,107	0,169	0,604
De Havilland Ca-									
nada DHC6-300	0,101	0,136	0,024	0,049	0,018	0,328	0,1	0,145	0,573
Mc Donnel Do-									
uglas DC-9-30	0,106	0,103	0,026	0,039	0,013	0,286	0,076	0,175	0,538
Mc Donnel Do-	0.444	0 445	0.004	0.000	0.045	0.004	0.070	0.400	0 504
Ma Donnol Do	0,111	0,115	0,024	0,038	0,015	0,304	0,079	0,182	0,564
	0 1 1 4	0 104	0 032	0.046	0.02	0 3 1 6	0.077	0 160	0 562
Mc Donnel Do-	0,114	0,104	0,002	0,040	0,02	0,010	0,077	0,103	0,302
uglas DC-10-30	0.106	0.085	0.026	0.046	0.016	0.281	0.067	0.137	0.483
Boeing 737-200	0.092	0.105	0.024	0.038	0.012	0.27	0.071	0.129	0.471
Boeing 727-100	0.111	0.111	0.026	0.045	0.024	0.317	0.078	0.133	0.528
Boeing 747-100	0.122	0.101	0.017	0.044	0.014	0.298	0.062	0.089	0.449
Airbus A300-B2	0.146	0.119	0.02	0.045	0.023	0.353	0.076	0.116	0.545
Boeing 707-121	0.098	0.082	0.021	0.04	0.019	0.259	0.081	0.103	0.444
Boeing 707-320c	0.098	0.082	0.019	0.039	0.013	0.249	0.073	0.074	0.398
Boeing 720-022	0.113	0.094	0.026	0.04	0.022	0.294	0.078	0.122	0.495
Boeing 707-321	0.095	0.073	0.02	0.037	0.017	0.242	0.074	0.09	0.406
McDonnel Douglas				- ,	- , -			-,	
DC-8	0,128	0,093	0,023	0,051	0,016	0,31	0,129	0,119	0,559
McDonnel Douglas									
DC-9-10	0,103	0,122	0,029	0,04	0,015	0,31	0,085	0,164	0,558
VFW Fokker 614	0,141	0,128	0,027	0,04	0,024	0,359	0,107	0,161	0,628
	Wing	Fuse-	Em-	Landing	Na-	Struc-	Power	Fixed	Empty

 Tabelle 2.2
 Komponentenmassenaufteillungstabelle
 (RoskamV 1989)

								Equ-	
		lage	penn.	Gear	celle			pi-	
	Group	Group	Group	Group	Group	ture	plant	ment	mass
Fokker F28-1000	0,113	0,108	0,025	0,042	0,013	0,302	0,083	0,145	0,529
Sud-Aerospatiale									
Caravelle	0,134	0,105	0,018	0,046	0,014	0,317	0,079	0,145	0,541
Bristol Britania 300	0,087	0,072	0,021	0,037	0,032	0,248	0,128	0,097	0,474
Canadair CL-44C	0,077	0,1	0,018	0,035	0,033	0,263	0,111	0,111	0,485
Lockheed Electra	0,066	0,086	0,017	0,033	0,038	0,24	0,118	0,125	0,483

Die Interface für diese Methode ist sehr nutzerfreundlich. Um alle Massen zu berechnen, muss er nur das ähnlichste Flugzeug auswählen. Das wird durch die Combobox realisiert. Die zweite Inputdatei ist die Betriebsleermasse, diese wird aus der *Preliminary Sizing* Tabelle entnommen. Auf der rechten Seite sind fertige Ergebnisse für einzelne Komponentenmassen gezeigt.

Die Wahl von Massenaufteilungen ist durch ein Kombinationsfeld realisiert. Zelle AL45 ist mit diesem verknüpft. Um die entsprechenden Parameter von Tabelle zu bekommen wird die Funktion SUMIF verwendet. Zum Beispiel, um den Flugzeugkomponentenbeiwert zu bekommen:

=SUMIF(\$AL\$13:\$AL\$44; \$AL\$45; AM13:AM44)

Sie wählt nur einen Parameter, der für entsprechendes Flugzeug ist. Die erste Zeile unter der Komponentenaufteillungstabelle (Tabelle 2.2) enthält die Massenaufteilungen für das gewählte Flugzeug. Die Massenaufteilung aus RoskamV ist aber für maximale Startmasse kalkuliert. In Zeile 46. sind die Massenaufteilungen für die Betriebsleermasse berechnet.

Die Ergebnisse sind mit der Gleichung 1.1 berechnet.

$$m_{komponent} = k_{massenaufteilung} \cdot m_{OE}$$
 (2.1)

$m_{komponent}$	Masse von einzelnem Flugzeugelement
kmassenaufteilung	Massenaufteilung entsprechenden Komponenten in Referenzflugzeug
	im Vergleich zur Betriebsleermasse vom Referenzflugzeug, aus der Ta-
	belle genommen
m_{OE}	Betriebsleermasse von Entwurfsflugzeug, in PreSTo ist es aus der Preli-
	minary-Sizing-Tabelle bekannt.

Mit dieser Methode kann man Flügelmasse, Rumpfmasse, Leitwerksmasse, Gondelmasse, Strukturmasse, Installiertentriebwerksmasse, Systemgesamtmasse berechnen.

Im Anhang A ist die Interface der RoskamV Methode hinzugefügt.

2.2 Class I Raymer89 Methode

Die zweite Berechnungsmethode nach Raymer89 hat ein sehr einfaches Berechnungsschema, das in Tabelle 2.4 gezeigt ist. Für jede Komponente werden ein Beiwert und eine Referenzgröße eingegeben. In PreSTo werden die Beiwerte aus **Freitag 2006** benutzt. Es gibt zwei verschiedene Beiwertsparameter. Einer ist für Flugzeuge, die als Gruppe *Trans*- *port* entwickelt wurden, der zweite für die *General Aviation* Gruppe. Für beide dieser Gruppen gilt aber dasselbe Berechnungsschema. Als Referenzparameter für Flügel und Leitwerk wird die ausgesetzte Oberfläche für die entsprechende Komponente verwendet, für den Rumpf wird die benetzte Oberfläche genommen, für das Fahrwerk und die Systeme wird maximale Startmasse verwendet und für die installierte Triebwerkmasse wird die Einzeltriebwerkmasse genommen.

	Factor		Reference pa-	Mass [kg]
	Transport	business	rameter name	Transport or gen. avia-
	jets	jets		tion
Wing	74,61	34,53	$S_{exposed} [m^2]$	"factor" · "value"
Fuselage	20,27	11,5	$S_{wetted}[m^2]$	"factor" · "value"
Horizontal tail	43,45	17,03	$S_{exposed} [m^2]$	"factor" · "value"
Vertical tail	31,42	12,52	$S_{exposed} [m^2]$	"factor" · "value"
Nose gear	0,006	0,006	m _{MTO} [kg]	"factor" · "value"
Main gear	0,033	0,029	m _{MTO} [kg]	"factor" · "value"
Nacelle	-	-	-	0
Structure	-	-	-	Sum
Power plant	1,45	1,32	$m_{\rm E}$	"factor" · "value"
System & Items	0,161	0,19	m _{MTO}	"factor" · "value"
m _{OE}	-	_	-	Sum

 Tabelle 2.3
 Rechenschema f
 ür die Class / Masseprognose basierend auf Daten aus Raymer 1989 mit Parametern nach Freitag 2006

In PreSTo muss man nur wählen, ob es ein Transportflugzeug oder Business-Jet ist und die Masse des einzelnen Triebwerks eingeben, um alle Massen zu bekommen. Andere Referenzparameter werden aus anderen Tabellen genommen oder automatisch berechnet.

Benetzte Rumpfoberfläche (Zelle K64) ist nach Gleichung (2.2) berechnet.

$$S_{wer,f} = \pi \cdot d_f \cdot l_f \cdot \left(1 - \frac{2}{\lambda_F}\right)^{\frac{2}{3}} \cdot \left(1 + \frac{1}{\lambda_F^2}\right)$$
(2.2)

d_F

Rumpfdurchmesser, für nicht kreisförmige Rümpfe wird d_F berechnet aus dem Rumpfumfang P_F mit $dF = P_F / \pi$,

 λ_F Schlankheitsgrad des Rumpfes $\lambda_F = l_F / d_F$

 l_F Länge des Rumpfes

Triebwerksmassesuggestion (Zelle D83) ist nach (Scholz 1999) eingegeben und mit Gleichung (2.3) berechnet.

$$m_E = \frac{0.0724}{g} \cdot T_{TO}^{1.1} \cdot e^{-0.045 \cdot BPR}$$
(2.3)

- *m_e* Masse eines Triebwerks
- g Erdbeschleunigung in

T_{TO} Startschub

BPR Nebenstromverhältnis

Die Masse der Triebwerksgondel ist schon in den anderen Massengruppen enthalten und deswegen gleich Null.

Neue Parameter, die in **Freitag 2006** entworfen wurden, liefern zwar kleine Fehler für jede Massengruppe, aber um die Betriebsleermasse zu berechnen, muss man noch einen anderen Parameter nutzen. Dieser Parameter heißt k_x . Werte für diesen Parameter wurden in Zellen AA66 und AB66 mit allen anderen Parameter gezeigt.

Neue Parameter wurden nach Statistiken empirisch ermittelt. Die dazu gebrauchte Datei über Massenaufteilungen von verschiedenen Flugzeugmodellen wurde aus **RoskamV 1988** genommen. Vergleichung der Abweichungen für Businessjets als Beispiel zeigt, dass neue, bei Freitag entwickelte Faktoren kleinere Fehler für wahre Flugzeuge generieren.

Abweichung mOE

Bild 2.2 Vergleich Betriebsleermassenschätzabweichungen für Businessjets (Freitag 2006)

Im Anhang A ist die Interface der Raymer89 Methode hinzugefügt.

2.3 Class II Torenbeek88 Methode

Die Torenbeek88 Methode ist ein komplizierter Berechnungsprozess. Im Skript zur Vorlesung Flugzeugentwurf **Scholz 1999** sind die wichtigsten Gleichungen, die Transportflugzeuge betreffen, wiedergegeben. In PreSTo wird diese Methode integriert.

Für jede Massenaufteilung ist die entsprechende Gleichung gegeben. Jede Masse ist von mehreren Beiwerten abhängig. Die Flügelmasse wird außerdem durch Iteration berechnet.

Für Flügelmasseberechnung werden erst aber unumgängliche Beiwerte berechnet. Der Referenzwert:

$$b_{ref} = 1,905m$$
 (2.4)

Die strukturelle Spanweite:

$$b_s = \frac{b}{\cos\phi_{50}} \tag{2.5}$$

Der Bruchlastfaktor:

$$n_{ult} = 1,5 \cdot n_{\lim} \tag{2.6}$$

Die sichere Lastvielfache (n_{lim}) ist aus Tabelle 2.5 einlesen.

 Tabelle 2.4
 Die sichere Lastvielfachewerte f
 ür normal und commuter category aeroplane nach JAR-23 sowie Flugzeuge nach JAR-25 (
 Scholz 1999)

$m_{MTO} \leq 1$ 868 kg	$n_{\rm lim}$ = 3,8
1 868 kg < m_{MTO} < 22 680 kg	$n_{\rm lim} = 2.1 + \frac{24000}{2.205 \cdot m_{MTO} + 10000}$
$m_{MTO} \ge 22\ 680\ \text{kg}$	$n_{\rm lim}$ = 2,5

Der Iterationsprozess ist als Makro realisiert. In Makro *ChoseTorenbeek88methode* ist eine Schleife hinzugefügt. Mit steigender Flügelmasse ,mw1' ist immer neu die Betriebsleermasse berechnet. Dann ist Flügelmasse ,mw2' berechnet. Die Schleife wird als ,mw1' und ,mw2' fast dieselbe Werten haben. Dann ist die Flügelmasse gleich ,mw1' in Zelle AH102 angezeigt. Nach allen Änderungen, um noch mal Flügelmasse zu kalkulieren, muss man den Torenbeek88-Hauptknopf noch mal drücken.

Bild 2.3 VBA Do-Loop-While-Schleife, die die Flügelmasse nach Torenbeek88 berechnet.

mw1 = 0 Do mw1 = mw1 + 1 mMZF = Range("AH101").value + mw1 mw2 = (mMZF ^ 0.7) * Range("AH97").value Loop While mw1 < mw2 Range("AH102").value = mw1

Dann werden Korrekturfaktoren verwendet. Die Flügelmasse in Zelle AH102 ist für eine Masse des Flügels mit Hochauftrieb, Querruder und Fahrwerkbefestigung. Es werden aber nicht Triebwerke, Spoiler oder Abstützung betrachtet. Entsprechende Korrekturfaktoren **Scholz 1999** sind unumgänglich für andere Situationen zu übernehmen:

+2%	für einen Flügel mit Spoilern
-5%	für 2 Triebwerke am Flügel
-10%	für 4 Triebwerke am Flügel
-5%	wenn das Fahrwerk nicht am Flügel angebracht ist
-30%	wenn der Flügel abgestützt ist

In PreSTo muss der Nutzer nur auf unumgängliche Fragen antworten, wie zum Beispiel, ob Triebwerke am Flügel angebracht sind. Wenn ja, wird die Anzahl der Triebwerke von *Preliminary Sizing* automatisch gelesen.

Rumpfmasse ist mit Gleichung (2.3) für Sturzgeschwindigkeit V_D > 250 kts (128,6 m/s) EAS zu berechnen.

$$m_F = 0,23 \cdot \sqrt{V_D \cdot \frac{l_H}{w_F + h_F}} \cdot S_{F,wet}^{1,2}$$
(2.7)

V_D Sturzgeschwindigkeit in m/s äquivalenter Fluggeschwindigkeit

l_H Hebelarm des Höhenleitwerks

w_F maximale Rupfbreite

 h_F maximale Rumpfhöhe

 $S_{F,wet}$ Fläche des Rumpfes in m²

Danach ist diese Masse mit entsprechenden Korrekturfaktoren (sehe unten) betrachtet. Die Meisten von ihnen werden automatisch verwendet. Der Nutzer muss nur antworten, ob der Rumpf einen verstärkten Kabinenboden hat.

+8%	für eine Druckkabine
+4%	für Triebwerke am Rumpfheck
+7%	für ein Hauptfahrwerk, das am Rumpf befestigt ist
-4%	wenn der Rumpf keinen Fahrwerksschacht enthält
+10%	für ein Frachtflugzeug mit einem verstärkten Kabinenboden

Die Korrekturfaktorenverwendung ist in Tabelle in Zellen AB109:AF113 realisiert. Wenn ein Faktor verwendet soll, ist *True* in erster Spalte gezeichnet. Dann mit *Sumif*-Funktion werden alle Faktoren, die *True* haben, summiert und im Rumpfmasse (Zelle AD117) von Gleichung (2.7) verwendet.

 Tabelle 2.5
 Tabelle mit Korrekturfaktoren integriert in PreSTo für Rumpfmasseauslegung (Zellen AB109:AF113)

TRUE	0,08	cabin pressure
TRUE	0,04	Engine on Fuselage
FALSE	0,07	Main landing gear on fuselage
TRUE	-0,04	Landing gear bay NO in fuselage
FALSE		Harder cabin floor for cargo
TALSE	0,1	
sum	0,08	

Höhenleitwerkmasse und Seitenleitwerkmasse sind nach Gleichung (2.8) und (2.9) für Sturzgeschwindigkeit V_D> 250 kts (128,6 m/s) EAS zu berechnen.

$$m_{H} = k_{H} \cdot S_{H} \cdot \left(62 \cdot \frac{S_{H}^{0,2} \cdot V_{D}}{1000 \cdot \sqrt{\cos \varphi_{H,50}}} - 2,5 \right)$$
(2.8)

$$m_{V} = k_{V} \cdot S_{V} \cdot \left(62 \cdot \frac{S_{V}^{0,2} \cdot V_{D}}{1000 \cdot \sqrt{\cos \varphi_{V,50}}} - 2,5 \right)$$
(2.9)

m_H	Masse des Höhenleitwerks
m_V	Masse des Seitenleitwerks
$k_H = 1$	für eine feste Flosse
$k_{H} = 1,1$	für eine trimmbare Flosse
$k_v = 1 + 0,1$	$5 \cdot rac{S_H \cdot z_H}{S_V \cdot b_V}$
S_H	Höhenleitwerksfläche
S_V	Seitenleitwerksfläche
Z_H	senkrechter Abstand von der Wurzel des Seitenleitwerks bis zu der Stelle wo
	das Höhenleitwerk am Seitenleitwerk befestigt ist
b_V	Spannweite des Seitenleitwerks
V_D	Sturzfluggeschwindigkeit
<i>φH</i> ,50	Höheleitwerkspfeilung der 50%-Linie
$\Phi_{V,50}$	Seitenleitwerkspfeilung der 50%-Linie

Fahrwerksmasse wird mit Gleichung (2.7) berechnet.

$$m_{LG,N} bzw. m_{LG,M} = k_{LG} \cdot \left(A_{LG} + B_{LG} \cdot m_{MYO}^{3/4} + C_{LG} \cdot m_{MTO} + D_{LG} \cdot m_{MTO}^{3/2} \right)$$
(2.10)

 m_{LG} Fahrwerksmasse ($m_{LG} = m_{LG,N} + m_{LG,M}$) $m_{LG,N}$ Masse des Bugfahrwerks $m_{LG,M}$ Masse des Hauptfahrwerks m_{MTO} Startmasse $k_{LG} = 1$ für Tiefdecker $k_{LG} = 1,08$ für Hochdecker $A_{LG},...,D_{LG}$ aus Tabelle 2.6

|--|

anrwerkten	A _{LG}	B_{LG}	C _{LG}	D_{LG}
Iauptfahrwerk	15	0,033	0,021	-
Bugfahrwerk	5,4	0,049	-	-
Hauptfahrwerk	18,1	0,131	0,019	2,23 * 10^-5
Bugfahrwerk	9,1	0,082	-	2,97 * 10^-6
	auptfahrwerk Igfahrwerk auptfahrwerk ugfahrwerk	auptfahrwerkALGauptfahrwerk15auptfahrwerk5,4auptfahrwerk18,1ugfahrwerk9,1	auptfahrwerk 15 $0,033$ igfahrwerk $5,4$ $0,049$ auptfahrwerk $18,1$ $0,131$ ugfahrwerk $9,1$ $0,082$	Intwerken A_{LG} B_{LG} C_{LG} auptfahrwerk150,0330,021igfahrwerk5,40,049-auptfahrwerk18,10,1310,019ugfahrwerk9,10,082-

Triebwerksgondelmasse wird mit Gleichung (2.11) berechnet.

$$m_N = \frac{k_N \cdot T_{TO}}{g} \tag{2.11}$$

 m_N Masse aller Triebwerksgondeln zusammen $k_N = 0,055$ für TL-Triebwerke, kleines Nebenstromverhältnis $k_N = 0,065$ für ZTL-Triebwerke, Turboprobtriebwerke T_{TO} Startschub aller Triebwerke zusammengErdbeschleunigung

Masse der installierten Triebwerke wird mit Gleichung (2.12) berechnet

$$m_{E,inst} = k_E \cdot k_{thr} \cdot n_E \cdot m_E \qquad (2.12)$$

<i>im_{E,inst}</i>	Masse der installierten Triebwerke
$k_{E} = 1,16$	für einmotorige Propellerflugzeuge
$k_{E} = 1,35$	für mehrmotorige Propellerflugzeuge
$k_{E} = 1,15$	für strahlgetriebene Passagierflugzeuge mit Triebwerken in Gondeln
$k_{E} = 1,4$	für Flugzeuge mit eingebauten Triebwerken
$k_{thr} = 1$	ohne Schubumkehr
$k_{thr} = 1,18$	mit Schubumkehr
n_E	Anzahl der Triebwerke
m_E	Masse eines Triebwerks ohne Anbauteile zur Triebwerksintegration

In PreSTo ist der Triebwertmassehinweis integriert. Es wird eine Triebwerksmasse nach der empirischen Gleichung (2.13) berechnet. Man kann auch selbst aus der Statistik diese Masse schätzen.

$$m_E = \frac{0.0724 \cdot T_{TO} \cdot 1.1^{-0.045 \cdot BPR}}{g}$$
(2.13)

T_{TO}	Startschub
BPR	Nebenströmverhältnis
g	Erdbeschleunigung

Der Koeffizientenwahl k_E und k_{thr} wird durch Optionsfeld und Kontrollkästchen realisiert.

Masse der Systeme wird mit Gleichung (2.14) berechnet

$$m_{SYS} = k_{EQUIP} \cdot m_{MTO} + 0,768 \cdot k_{F/C} \cdot m_{MTO}^{2/3}$$
(2.14)

m_{SYS}	Masse der Systeme
$k_{EQUIP} = 0,08$	einmotoriges Propellerflugzeug
$k_{EQUIP} = 0,11$	zweimotoriges Propellerflugzeug
$k_{EQUIP} = 0,13$	strahlgetriebenes Schulflugzeug
$k_{EQUIP} = 0,14$	Kurzstrecken-Transportflugzeug
$k_{EQUIP} = 0,11$	Mittelstrecken-Transportflugzeug
$k_{EQUIP} = 0,08$	Langstrecken-Transportflugzeug
m_{MTO}	maximale Startmasse
$k_{F/C} = 0,23$	für Flugzeuge mit einfacher Flugsteuerung
$k_{F/C} = 0,44$	für Transportflugzeuge mit manueller Flugsteuerung
$k_{F/C} = 0,64$	für Transportflugzeuge mit primärer Flugsteuerung mittles Sekundär-
	energie (z.B. Hydraulik) und Landeklappenantrieb
$k_{F/C} = 0,74$	für Transportflugzeuge mit primärer Flugsteuerung – einschließlich
	Spoilern – mittels Sekundärenergie (z.B. Hydraulik) und Landeklappen- antrieb
$k_{F/C} = 0,77$	für Transportflugzeuge mit primärer Flugsteuerung mittels Sekundär-
	energie (z.B. Hydraulik) und Landeklappen- und Vorflügelantrieb.
$k_{F/C} = 0,88$	für Transportflugzeuge mit primärer Flugsteuerung – einschließlich
	Spoilern – mittels Sekundärenergie (z.B. Hydraulik) und Landeklappen-
	und Vorflügelantrieb

In der Systemmasseinterface muss der Nutzer wählen, welches Flugzeug zu entwickeln ist – Kurzstrecken, Mittelstrecken oder Langenstrecken, um k_{EQUIP} zu bestimmen. Auch Flugzeugssteuerungstyp ($k_{F/C}$) muss vom Nutzer eingeben werden.

Wenn alle Flugzeuggruppenmassen berechnet werden, ist Betriebsleermasse als Summe von allen Einzelmassen bestimmen.

Im Anhang A ist die Interface der Torenbeek88 Methode hinzugefügt.

3 Schwerpunktberechnung und Flügelauslegung

Um Schwerpunkt von Gesamtenflugzeug zu berechnen, muss man erst Schwerpunktlage von jeder Baukomponente kennen. In PreSTo wird erst die Schwerpunktkoordinate für jede Bauteilkomponente aufgrund Referenzgroßen und **Scholz 1999** geschätzt.

Leitwerksschwerpunktauslegung ist je nach früherer gewählter Massenberechnungsmethode zu bestimmen. Für RoskamV-Methode muss Nutzer bereitgestellte Schwerpunktskoordinate eintippen. Für andere Methode werden extra Seitenleitwerk und Höhenleitwerk aufgrund Vorderkanteposition der mittleren aerodynamischen Profiltiefe(LEMAC) ausgelegt. Relative Schwerpunkte sind auf dem Bild 3.1 gezeigt.

Bild 3.1 Die Lage der Schwerpunkte von Massengruppen. (Scholz 1999)

Um den Abstand zwischen Nase des Flugzeugs und Komponenteschwerpunkt zu berechnen muss erst Abstand zwischen LEMAC und Schwerpunkt berechnet werden und dann mit dem Abstand zwischen Flugzeugnase und LEMAC summiert werden. Ersterer Abstand wird Geometrisch mit Gleichung (3.1) ausgelegt.

$$x_{CG} = x_{LEMAC} + x_{LEMAC,CG} \tag{3.1}$$

 x_{CG} Abstand zwischen Flugzeugnase und Schwerpunkt der Einzelteile. x_{LEMAC} Abstand zwischen Flugzeugnase und Vorderkante der mittlere aerodynamische Profilsehne $x_{LEMAC,CG}$ Abstand Vorderkante der mittlere aerodynamische Profiltiefe und Schwerpunkt Einzelteile. Relativabstand.

Relativer Abstand für Seiten- und Höhenleitwerk

$$x_{LEMAC,CG} = -(y_{MAC} - 0.2 \cdot b) \cdot tg(\varphi_0) + k_t \cdot c_r + (1 - k_t) \cdot c_t \cdot 0.4 \quad (3.2)$$

$x_{LEMAC,CG}$	Abstand zwischen LEMAC und Schwerpunkt
Умас	y Koordinate von mittlere aerodynamische Profilsehne
b	Spanweite
ϕ_0	Pfeilwinkel der Vorderkante
$k_t = 0,62$	für Höhen- und Seitenleitwerk (nicht T-Leitwerk)
$k_t = 0,45$	für Seitenleitwerk bei T-Leitwerk
C _r	Profiltiefe am Rumpf

 c_t Profilsehne am Spitze

Bild 3.2 Geometrisches Berechnungschema für Gleichung (3.2)

Erster Teil der Gleichung (3.2) berechnet x₁, aus Bild 3.2, Größe bzw. Abstand zwischen LEMAC und Schwerpunkt von Seiten- und Höhenleitwerk, zweiter Teil die ausgelegte 0,41 Größe. In PreSTo wird k_t Koeffizient automatisch anhand Zelle AA34 in *Tailplane* Tabelle ausgelegt.

Berechnungsprinzip von Flügelschwerpunktslage ist gleich. In Flügel ist aber der Kink problematisch. Deswegen gibt es vier Möglichkeiten für die Lage der Referenz- und mittlerer aerodynamische Profiltiefe. Am Bild unten ist ein Beispiel gezeigt. Referenzprofiltiefe ist auf innere Flügelteil bezogen, mittlere aerodynamische Profiltiefe. Dieses Bild ist die Erklärung der Gleichung (3.3), (3.4), (3.5), (3.6).

Bild 3.3 Geometrische Berechnungsschema für Fass der Gleichung (3.5)

Für mittlere aerodynamische Profiltiefe und Referenzprofiltiefe am Innerflügel

$$x_{LEMAC,CG} = -(y_{MAC} - 0, 2 \cdot b) \cdot tg(\varphi_{0i}) + \left(\left(\frac{c_k - c_r}{y_k}\right) \cdot (0, 2 \cdot b) + c_r\right) \cdot k_f \qquad (3.3)$$

Für mittlere aerodynamische Profiltiefe am Innerflügel und Referenzprofiltiefe am Außerflügel

$$x_{LEMAC,CG} = -(y_{MAC} - y_k) \cdot tg(\varphi_{0i}) - (y_k - 0, 2 \cdot b) \cdot tg(\varphi_{0o}) + \left(\left(\frac{c_t - c_k}{b - y_k}\right) \cdot (0, 2 \cdot b - y_k) + c_k\right) \cdot k_f$$
(3.4)

Für mittlere aerodynamische Profiltiefe am Außerflügel und Referenzprofiltiefe am Innerflügel

$$x_{LEMAC,CG} = -(y_{MAC} - y_k) \cdot tg(\varphi_{0o}) - (y_k - 0, 2 \cdot b) \cdot tg(\varphi_{0i}) + \left(\left(\frac{c_k - c_r}{y_k}\right) \cdot (0, 2 \cdot b) + c_r\right) \cdot k_f$$
(3.5)

Für mittlere aerodynamische Profiltiefe und Referenzprofiltiefe am Außerflügel

$$x_{LEMAC,CG} = -(y_{MAC} - 0, 2 \cdot b) \cdot tg(\varphi_{0o}) + \left(\left(\frac{c_t - c_k}{b - y_k} \right) \cdot (0, 2 \cdot b - b_k) + c_k \right) \cdot k_f \quad (3.6)$$

Abstand zwischen LEMAC und Schwerpunkt
y-Koordinate von mittlere aerodynamische Profiltiefe
Spanweite
y-Koordinate von Kink
Profiltiefenlänge am Kink
Pfeilwinkel der Vorderkante für Innerflügel
Pfeilwinkel der Vorderkante für Außerflügel

k_{f}	Koeffizient, Teil der Referenzprofiltiefe vor Schwerpunktlage $(0,38 - 0,42)$
C_r	Profiltiefe am Rumpf
_	$\mathbf{D}_{\mathbf{r}} = \mathbf{f}_{\mathbf{r}}^{\mathbf{r}} \mathbf{f}_{\mathbf{r}}^{\mathbf{r}} = \mathbf{f}_{\mathbf{r}}^{\mathbf{r}} \mathbf{f}_{\mathbf{r}}^{\mathbf{r}}$

 c_t Profiltiefe am Spitze

Am Bild 3.1 wird auch Schwerpunktlage von Rumpf gezeigt. Je nach Flugzeugkonfiguration findet sich diese Lage in Bereich von 0,38 bis zum 0,47 Rumpflänge. Der Schwerpunkt der Systeme und der Ausrüstung kann mit 0,4 -0,5 der Rumpflänge festgelegt werden.

Um den Schwerpunkt von allen anderen Baugruppen zu bestimmen, werden sie in Flügelgruppe und Rumpfgruppe geteilt. In PreSTo ist das durch Optionsfelder realisiert. Wenn eine Baugruppe zur Flügelgruppe gehört, wird die Schwerpunktlage relativ zur Rumpfnase festgestellt. Wenn eine Baugruppe zur Rumpfgruppe gehört, wird die Schwerpunktlage relativ zur LEMAC festgestellt.

Wenn Schwerpunkte von alle Baugruppen bekannt sind, kann der gesamte Schwerpunkt von Flügelgruppe und Rumpfgruppe bestimmt werden. Für die Rumpfgruppe ist die Rumpfnase der Nullpunkt. Für die Flügelgruppe ist LEMAC der Nullpunkt. Der gesamte Schwerpunkt wird nach Gleichung (3.7) berechnet.

$$x_{CG} = \frac{\sum m_i \cdot x_i}{\sum m_i}$$
(3.7)

x_{CG}	Schwerpunktlage der Gesamtengruppe
m_i	Masse von einzeln Bauteil
X_i	Schwerpunktslage von einzelnem Bauteil

Danach ist die Flügelposition mit Gleichung (3.8) in Zelle K232 bestimmen.

$$x_{LEMAC} = x_{FG} - x_{CG,LEMAC} + \frac{m_{WG}}{m_{FG}} \left(x_{WG,LEMAC} - x_{CG,LEMAC} \right)$$
(3.8)

 x_{LEMAC} Abstand zwischen Rumpfnase und LEMAC

χ_{FG}	Abstand Nullpunkt bis Schwerpunkt der Rumpfgruppe
$x_{CG,LEMAC}$	Abstand vom LEMAC des Gesamtes Flugzeug bis zum Schwerpunkt. Es wird
	nach Wunsch vorgegeben, z.B. $x_{CG,LEMAC} = 0,25 c_{MAC}$
m_{WG}	Masse der Flügelgruppe
m_{FG}	Masse der Rumpfgruppe
$x_{WG,LEMAC}$	Abstand LEMAC bis zum Schwerpunkt der Rumpfgruppe

Wenn Abstand zwischen Rumpfnase und mittlere aerodynamische Profiltiefe bekannt ist, wird der Schwerpunkt vom Gesamtflugzeug nach Gleichung (3.9) berechnet. Gleichung (3.9) ist in Prinzip gleich zu Gleichung (3.7) für diesen konkreten Fall.

$$x_{CG} = \frac{m_{FG} \cdot x_{FG} + m_{WG} \cdot (x_{LEMAC} + x_{WG, LEMAC})}{m_{OE}}$$
(3.9)

 x_{CG} Schwerpunktlage der Gesamtengruppe m_{FG} Masse der Rumpfgruppe

χ_{FG}	Abstand Nullpunkt bis Schwerpunkt der Rumpfgruppe
m_{WG}	Masse der Flügelgruppe
<i>x_{LEMAC}</i> Absta	and zwischen Rumpfnase und LEMAC
$x_{WG,LEMAC}$	Abstand LEMAC bis zum Schwerpunkt der Rumpfgruppe
m_{OE}	Betriebsleermasse

Im Anhang A ist die Interface der Schwerpunktsberechnung hinzugefügt.

4 Darstellung der Ergebnisse

Je nach gewählter Massenbestimmungsmethode werden im *Results* Teil entsprechende Ergebnisse gezeigt. Auch spezifische Flugzeugmassen – Betriebsleermasse, Leertankmasse, maximale Tankmasse - werden nach Tabelle 4.1 berechnet.

 Tabelle 4.1 Massenhauptgruppen und Massenbegriffe nach (DIN9020) Teil 1 zitiert nach (Scholz 1999)

MRV Max	V imum	Roll	Weight	Rollkraftstoff		
MTC Max)W imum	Take	off Weight	Brtriebkraftstoffe	Schmierstoffe Kraftstoff im Rumpf	
				(FW)	Kraftstoff im Flügel	
MZFW Maximum Zero Fuel Weight				Nutzlast (PL)		
		OWE Operation Empty Weight		Besatzung und Dienstlast		
		Oper	auon Empty Weight	Bewegliche Einsatz	zausrüstung	
			MWE	Flüssigkeiten		
			Manufacturer Em-	Triebwerksanlage		
			pty weight	Flugwerk		

Alle Ergebnisse sind im anschaulichen Tabelle aufgezeigt. Diese Ergebnisse betreffen immer letzte gewählte Berechnungsmethode. Die Beiwerte zur Weiterrechnung sollen von diesem Abschnitt genommen werden.

Im Anhang A ist die Interface der Darstellung der Ergebnisse hinzugefügt.

5 Erforderlicher Schwerpunktsbereich

Integrierung von **Detalle 2009** Arbeit wurde als letzter Teil dieser Projektarbeit gemacht. Schwerpunktbereichsberechnung ist als neue Exceltabelle ausgeführt. Viele der Parameter, die früher vom Nutzer eingegeben sollten, sind jetzt automatisch von *Mass and CG* Tabelle eingelesen.

Die Namen in den Makros sind aktualisiert. Es gibt noch ein Kommunikationsfeld hinzugefügt. Sie stehen für die Information, dass Schwerpunktsbereichkalkulation nur für Torenbeek88 und Raymer89 Methoden gilt, weil RoskamV Methode keine Informationen über Leitwerks- und Fahrwerksteilenmassen erlaubt.

Die Formatierung wurde geändert, um zum PreSTo Look&Feel zu passen.

6 Zusammenfassung

Als Ergebnis von dieser Arbeit sind zwei Exceltabelle mit Schwerpunktlage-, Flügelauslegung- und Schwerpunktwanderungsbestimmung entstanden. Beide Tabellen sind mit PreSTo look&feel entwickelt und können in die offizielle Version von PreSTo schnell und ohne Probleme integriert werden. Mit diesen Tabellen wird PreSTo noch komplexer und genauer als das Entwurfstool.

Als Basisliteratur wurde das Skript für Vorlesung Flugzeugentwurf **Scholz 1999** verwendet. Die gesamte Berechnungsfolge von Abschnitt 10 wurde ganz hingefügt und weiter vertieft. Neue Parameter in der Raymer89 Methode oder verbesserte Referenzwerte für die Schwerpunktauslegung machen die Kalkulationen genauer und einfacher in der Nutzung.

Literaturverzeichnis

- **DIN EN 28601 1992** Norm DIN EN 28601 1992. Datenelemente und Austauschformate – Informationsaustausch – Darstellung von Datum und Uhrzeit
- Scholz 1999 SCHOLZ, Dieter: Skript f
 ür Vorlesung Flugzeugentwurf: Hamburg, Hochschule f
 ür Angewandte Wissenschaften Hamburg: Fachbereich Fahrzeugtechnik und Flugzeugbau: Vorlesungsnotizen Sommersemester 1999
- Roskam V 1988 ROSKAM, Jan: Airplane design Part V: Compnent Weight Estimation : Lawrence, Roskam The University of Kansas, 1989
- **Freitag 2006** FREITAG, André: Statistik zu einer Class 1 Masseprognose: Hamburg, Hochschule für Angewandte Wissenschaften Hamburg: Fachbereich Fahrzeugtechnik und Flugzeugbau, 2006
- **Detalle 2010** DETALLE, Nicolas: CG-Travel of Passenger Aircraft: Hamburg, Hochschule für Angewandte Wissenschaften Hamburg: Fachbereich Fahrzeugtechnik und Flugzeugbau, 2010

Anhang A

Bilder aus PreSTo Mass and CG-Tabelle

Please choose a method to prognose mass an distribution:			d mass		
	Roskam V		Raymer 89	Torenbeek 88	
Bild A	.1 Hauptknopfe	in PreSTc)		

Class I Method to prognose mass	and mass distribution [RoskamV]		
Select: The most similar aircraft (d	lesign, certificate)		
Boeing 737-200	•		
Imput Data			
Operating empty mass	m oe 41690 [kg]	Wing mass	m _w 8143][
		Fuselage mass	m _F 9294 [i
		Tail mass	m _t 2124 [I
		Landing gear mass	m o 3364 [ł
		Nacelle mass	m_x 1062 [i
		Structure mass	m _{btrkt} 23899 [
		Power plant mass	т _{РР} 6285 [
		Systems & items mass	m _{B2J} 11418 [j

Bild A.2 RoskamV Methodeinterface in PreSTo

2. Class / Method to prognose mass and	d mass distributio	n [Raymer89]			
Chose aircraft type:					
Transport	T				
Input Data					
Wing exposed area	S _{e (p,W}	97,44 [m²]	Wing mass	m _w	7270 [kg]
Fuselage outer diameter	\mathbf{d}_{ta}	4,04 [m]			
Fuselage length	I _{Fusciage}	31,48 [m]	Fuselage wetted area	Suntr	333,62 [m²]
			Fuselage mass	m,	6762 [kg]
Exposed area, horizontal tail	S _{esp,H}	22,08	Horisontal tail mass	m _{ht}	959 [kg]
Exposed area, vertical tail	$S_{\mathfrak{p},\mathfrak{p},V}$	20,45	Vertical tail mass	m _{vī}	643 [kg]
Max.take-off mass	m _{MTO}	73500 [kg] —	Nose gear mass	m _{ox}	441 [kg]
			Main gear mass	m _{on}	2426 [kg]
			Nacelle mass	m,	0[kg]
			Structure mass	MBTRKT	18501 [kg]
Engine mass suggestion	m _e	3796 [kg]			
Engine mass	m _e	3796 [kg]	Power plant mass	m _{pp}	5505 [kg]
			Systems & items mass	m _{eta}	11834 [kg]
			Operation Empty Weight	m _{oe}	40964 [kg]

Bild A.3 Raymer89 Methodeinterface in PreSTo

Class # Method to prognose mass and m	ass distribut	on [Torenbeek 88]			
Wing mass					
Reference value	b _{rer}	1,91 [m]			
Structural span	b,	36,56 [m]			
litimate load factor	n _{uri}	3,75 [-]			
Ving with spoiler					
Engines on wing					
Landing gear NO on wing advisable					
braced wing					
			Wing mass	m _w 549	99 [kg]
uselage mass					
Harder cabin floor for cargo					
			Dive speed	∨₀ 298,5	55 [m/s]
			Fuselage mass	m _r 603	79 [kq]
Failplane mass					
Trimmable fin			Horizontal tailplane mass	m., 92	27 [kg]
O Attached fin			Vertical tailplane mass	m _v 40)2 [kg]
Landing gear mass					
business jet and jet trainers	-		Nose landing gear mass	т _{ьо,м} 22	24 [kg]
			Main landing goog moon	m 17(06](ka)
			wain anding gear mass		- Ikgi

Bild A.4 Torenbeek88 Methodeinterface Teil 1 in PreSTo

Nacelle mass			
	Nacelle mass	m _#	1315 [kg]
Installed engine mass			
🖲 engine in nacelle			
O burried engine			
reverse thrust			
One engine mass suprestion m_ 1898 18 [km] State Eng	1		
]		
One engine mass m _e 1898,00 [kg]	Installed engine mass	m _{Ejns I}	5124,60 [kg]
- / - -			
Systems Mass			
C simple fligth controll			
C in anual flight controll primary flight controll use outer power feed (for examle hydraulic) and flaps use power feed			
rimary flight controll (spoilers also) use outer power feed (for examle hydraulic) and flaps use pow	Jer feed		
C primary flight controll use outer power feed (for examle hydraulic) and flaps and slotts use power fe	ed		
• primary flight controll (spoilers also use outer power feed (for example hydraulic) and flaps and slott	suse powerteed		
C Short range			
• Middle range			
O Long range			
	Systems mass	m _{ava}	9271 [kg]
Operation Empty Weight			
	Operation Empty Weight	moe	30547 [kg]

Bild A.5 Torenbeek88 Methodeinterface Teil 2 in PreSTo

4. Center of gravity and wing position					
	VAling Section	Euselage Section	7		
	(r usonge seenon			
Landing gear	-				
Nacelle	٠	•			
Power plants	•	۲			
For RoskamV method					
CG Tail	N _{CO,T}	31 [m]			
For Raymer89 and Torenbeek 88 method					
Lemac ∀tail	LEMAC _{VT}	31 [m]	CG Vtail	X _{CO,VT}	33,04 [m]
Lemac Htail	LEMAC _{HT}	30 [m]	CG Htail	X _{CO, HT}	31,55 [m]
Engine edge - lemac or fuselage	LEE	_1][m]			
Engine edge-cg engine	XILLO	-1 [m]	Engine CG	X _{CO, HT}	-2 [m]
CG systems	X _{CO,BYB}	18 <mark></mark> [m]			
CO fuedere		4.3 [m] 4	Suggestion	minimum	maximum
Colluselage	A COLE			14,17	14,00
CG landing gear	X 00,10	3][m]			
Coefficient from wing CG	κ _w	0,38	CG wing	× _{CB,W}	6,79 [m]
Xcglemac	X _{CO, LEMAC}	1 <mark>[</mark> [m]	CG Fuselage section	X _{CO, F6}	8,40 [m]
			CG wing section	X _{OB,W6}	0,36 [m]
			Xlemac	X LEMAC	6,48 [m]
			Wing grup mass	m _{warup}	7038,17 [kg]
			Fuselage grup mass	m _{F,grup}	22027,04 [kg]
			CG Plane	×Mar	7,63 [m]

5 Rusults

Wing mass	m _ψ	5499 [kg]
Fuselage mass	m _F	6079 [kg]
Horisontal tail mass	m _{ht}	927 [kg]
Vertical tail mass	m _{ντ}	402 [kg]
Tail mass	m _t	1329 [kg]
Nose gear mass	m _{ox}	434 [kg]
Main gear mass	m _{om}	2444 [kg]
Landing gear mass	mo	2878 [kg]
Nacelle mass	m,	1315 [kg]
Structure mass	MBTRKT	17100 [kg]
Power plant mass	M _{PP}	5125 [kg]
Systems & items mass	m _{esi}	9271 [kg]
Operation Empty Weight	m _{oe}	31495 [kg]
Maximum Takeoff Weight	m _{MTO}	63690 [kg]
Maximum Zero Fuel Weight	m _{=PAV}	45100 [kg]
CG Plane	X _{Mor}	13,84 [m]

Bild A.7 Ergebnisseinterface in PreSTo

Anhang B

ChoseTorenbeek88methode Makroquellcode

```
Sub ChoseTorenbeek88methode()
Application.Calculation = xlCalculationManual
'hiding anorther rows
  Application.Goto Reference:="area raymer89, area roskamV"
  Selection.RowHeight = 0
'Unhiding "Torenbeek88" rows
  Application.Goto Reference:="area torenbeek88"
  Selection.RowHeight = 14.25
  Range("AA6").value = "Torenbeek88"
'Iteration for wing mass
mw1 = 0
         Do
               mw1 = mw1 + 1
               mMZF = Range("AH101").value + mw1
               mw2 = (mMZF \land 0.7) * Range("AH97").value
         Loop While mw1 < mw2
    Range("AH102").value = mw1
    Range("A7").Select
  Application.Calculation = xlCalculationAutomatic
```

End Sub

Anhang C

Beladungsdiagramm aus PreSTo

Bild C.1 Beladungsdiagramm aus PreSTo